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A B S T R A C T

This study aimed to evaluate, following two different and sequential feeding trials, the effects of partial sub-
stitution of fish meal by 44.5 % of plant proteins (~50 % of total protein inclusion) on growth performance,
intermediate metabolism, well-being, and muscle chemical composition in the greater amberjack (Seriola
dumerili). Additionally, the benefits of performing a previous enzymatic treatment on the plant ingredients before
elaborating experimental aquafeeds (Trial II) compared to using untreated plant ingredients were also assessed.
Three isoproteic (63 % protein, CP) and isolipidic (18 % crude lipid, CL) diets were used in each experiment: i) a
control diet (CTRL), with 75.5 % of protein from marine origin; ii) two experimental diets, with 44.5 % of plant
proteins (PP and PPe for Trial I and II, respectively); and iii) the PP/PPe diets supplemented with 3 % of an algae-
based functional additive produced by Lifebioencapsulation S.L. (PP-LB and PP-LBe for Trial I and II, respec-
tively). The results showed that using vegetable ingredients enzymatically treated before the production of
aquafeed allows the partial substitution of dietary animal marine protein without affecting, or even improving
the fish growth performance. The algal-based functional additive did not improve the fish growth when incor-
porated in plant protein-based diets, although it seems to provide a protective effect to overcome the impairment
produced by the first contact of pre-treated vegetalized aquafeeds with the gastrointestinal tract in juvenile
amberjack. Moreover, the LB additive could provide other benefits in the long term both in fish fed on diets
elaborated with untreated and pre-treated plant ingredients, as evidenced by the level of cortisol released, the
protection against oxidative stress, and the improvement in the chemical composition of muscle compared to the
fish fed the plant-based diet without the functional additive. These findings demonstrate that the combination of
an enzymatic pre-treatment of plant proteins together with the use of nutraceuticals from algae-based additives is
a potential tool for more sustainable aquaculture of greater amberjack, a carnivorous species of high commercial
interest.
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1. Introduction

Aquaculture is the fastest-growing and most diverse animal pro-
duction system in terms of production yield, employability, number of
species, environments, and technology used. Recently, and particularly
in the European Union, species diversification strategies have been
impulsed to improve the sector’s resilience and sustainability to deal
with environmental, economic, and technical challenges such as climate
change, diseases, or market fluctuations (Cai et al., 2023). However, the
full establishment of new species is a slow process because the industry
considers cautiously all technical, financial, economic, and time-
consuming challenges that involve the farming of a new species,
instead preferring to concentrate efforts on the already established and
most advantageous species for rapid growth (Harvey et al., 2016). The
greater amberjack (Seriola dumerili) is a pelagic teleost with increasing
interest in the marine fish farming industry because of its outstanding
biological and economic potential (Robles and Mylonas, 2017). Among
its potential features are fast growth, flesh quality, average price, and
acceptance by the global market (Nijssen et al., 2019). This species is
strictly carnivorous, being an active predator from its earliest stages
(García-Gómez, 2000) to juveniles (Takakuwa et al., 2006), which is the
reason for its high energy and protein requirements in adapted aqua-
feeds (Navarro-Guillén et al., 2019).

Although fishmeal (FM) is the ideal source of dietary protein for
predatory fish, its continuous demand, unstable supply, and high prices
due to the expansion of aquaculture, has led the scientific community to
focus on the search for alternatives to make this activity more profitable
and sustainable. Primary efforts are focused on the replacement of FM
with vegetable sources, mainly enhanced by the strict European legis-
lation on the use of insects and terrestrial animal by-products, such as
poultry blood, meat, feather, and bonemeals (Rodehutscord et al., 2002;
Tomás et al., 2005; Gasco et al., 2018, 2020). Against this background,
and based on their nutritional potential, plant feedstuffs are widely used
as an alternative to FM being the main plant-based alternatives soybean,
pea, canola, lupin, or linseed (Drew et al., 2007). Nevertheless,
including relatively high levels of these materials in diets becomes more
challenging when dealing with carnivorous species, such as S. dumerili,
affecting their growth performance and health (Oliva-Teles et al., 2015).
Among other parameters, plant-based diets can cause adverse effects on
nutrient digestibility and bioavailability, antioxidant defense (Olsvik
et al., 2011; Minářová et al., 2021), and gut functionality and health
(Diwan et al., 2022). In this regard, the literature has shown that plant
proteins can present drawbacks for fish nutrition, such as the presence of
anti-nutritional factors (ANFs) (Chakraborty et al., 2019), a high car-
bohydrate content, deficiency in certain essential amino acids or low
palatability (Gatlin III et al., 2007). All these can affect nutrient avail-
ability, digestibility, and absorption, leading to subsequent harmful ef-
fects on whole fish health and welfare (Glencross, 2016; Daniel, 2018;
Hua et al., 2019).

These handicaps can be overcome with different dietary techniques,
such as the addition of functional additives (Sarker et al., 2007; Abdel-
Latif et al., 2022), the combination of different plant sources (Torstensen
et al., 2008; Martínez-Llorens et al., 2012; López-Elías et al., 2015) or the
application of biotechnological treatments, including physical (micro-
wave), chemical (enzymes), and biological (microbial fermentation)
(Ghosh and Mukhopadhyay, 2006; Thongprajukaew et al., 2011; Jiang
et al., 2014; Encarnação, 2016; Sansuwan et al., 2017; Jannathulla et al.,
2019; Hua et al., 2019) or even the combination of some of them
(Fonseca et al., 2023; Vizcaíno et al., 2024). Specifically, in the case of
chemical treatments, exogenous enzymes improve fish growth perfor-
mance (Zheng et al., 2020; Molina-Roque et al., 2022; Flores-Moreno
et al., 2024) as they increase the nutritional value of plant sources, or
even microalgal biomasses, by breaking down cellular walls, and
therefore make nutrients available to easily absorbable fractions.
Furthermore, applying enzymes like proteases can neutralize the trypsin
inhibitors present in soybean meal, enabling greater utilization of

dietary protein (Jannathulla et al., 2019). On the other hand, supple-
mentation of diets with a high percentage of FM substitution with
functional additives can reverse the consequences of including plant
proteins. For example, supplementation with microalgae can improve
the nutritional value of aquafeeds due to the presence of high-quality
proteins, long-chain polyunsaturated fatty acids (LC-PUFA), vitamins,
and micronutrients (Yaakob et al., 2014; Ansari et al., 2021). Including
microalgae in diets at low percentages has been shown to enhance
growth performance, immune response, feed digestibility, and final
product quality (Nagarajan et al., 2021; Molina-Roque et al., 2022; Sáez
et al., 2024). Moreover, microalgae are characterized by the production
of bioactive compounds (da Silva Vaz et al., 2016) that may act as nu-
traceutical ingredients that evoke benefits in the growth rate of aquatic
species through higher triglyceride and protein deposition in muscle,
disease resistance, nitrogen output, omega-3 fatty acid content, physi-
ological activity, and carcass quality (Shah et al., 2018). Thus, there is
extensive information on the use of algae in fish feed. For example, many
of the secondary metabolites produced by the algae, including func-
tional proteins, antioxidants, minerals, and vitamins, have been found to
have antiviral and antimicrobial properties improving the immune sta-
tus, gut functioning, and stress resistance in fish (Saleh, 2020). More-
over, from an environmental perspective, the use of microalgae has been
considered a sustainable approach for mitigating anthropogenic CO2
(Becker, 2007) or wastewater (Kamyab et al., 2018); thus, microalgae
biomass can be a valuable candidate as an eco-friendly functional
additive.

Under this framework, the present study aims to evaluate the effects
of diets with a high inclusion of plant ingredients (44.5 %) on growth,
intermediate metabolism, well-being, and muscle composition in
S. dumerili, when including a dietary algal-based functional additive.
The benefits of using an enzymatic pre-treatment on the vegetable in-
gredients before their inclusion into aquafeeds compared with those
diets elaborated with the untreated feedstuffs were also assessed.

2. Material and methods

2.1. Experimental design and diet formulation

Two feeding trials were conducted (henceforth named Trial I and
Trial II) with identical diets, using the same vegetable ingredients and
including an algae-based functional additive composed of a blend of
hydrolysed algae and yeast. In Trial I the aquafeed contained vegetable
ingredients, whereas in Trial II these ingredients were enzymatically
pre-treated. Then, three isoproteic (63 % crude protein, CP) and iso-
lipidic (18 % crude lipid, CL) diets were elaborated for each feeding
assay: i) Control diet (CTRL), mimicking the ingredient composition of
commercial diets, including 75.5 % of animal protein from marine
sources; ii) Experimental diets with a high inclusion of plant proteins
(44.5 %, i.e. ~50 % of total protein inclusion) named as PP and PPe for
Trial I and II, respectively; and iii) PP/PPe diets supplemented with 3 %
of an algae-based additive (PP-LB and PP-LBe for Trial I and II, respec-
tively). All diets were formulated and developed by Life-
Bioencapsulation S.L. (Almería, Spain; Ingredients and chemical
composition of the diets used in both feeding trials are shown in Table 1.
Note that for Trial II, previous to pellet extrusion, plant protein in-
gredients included in the three experimental aquafeeds (wheat, pea
protein, and soybean protein concentrate), were previously enzymati-
cally hydrolysed for improving the bioavailability of carbohydrates
breaking the vegetable cell walls. Briefly, for the enzymatic hydrolysis,
plant ingredients were suspended (100 g dry weight/L) in 50 mM so-
dium citrate buffer (pH 5.0) and incubated at 40 ◦C under continuous
agitation for 6 h in presence of a blend of phytases (ePhyt®, 1309.
Phytase activity units/mL, Global Feed S.L. Tervalis Group, Huelva,
Spain) and carbohydrases (xylanase 20,000 U/g; glucanase; 30,000 U/g;
cellulase 10,000 U/g, and protease 10,000 U/g) providing a 0.05
enzyme to plant ingredients ([E]/[S]) ratio. Immediately after the
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hydrolysis, the reaction mixture was heated at 80 ◦C for 15 min to
inactivate the enzymes.

2.2. Animal maintenance and ethics

Greater amberjack juveniles were supplied by Futuna Blue España S.
L. (El Puerto de Santa María, Cádiz, Spain) and acclimated to the indoor
experimental facilities at the Servicios Centrales de Investigación en Cul-
tivos Marinos (SCI-CM, CASEM, University of Cádiz, Puerto Real, Cádiz,
Spain; Spanish Operational Code REGA ES11028000312) in a flow-
through system under controlled conditions of salinity (37 ‰), tem-
perature (20 ± 1 ◦C), and natural photoperiod at our latitude (36◦31′45″
N, 6◦11′31″ W, from October to December 2020 for Trial I and from
October to December 2021 for Trial II). All experimental procedures
were performed following the guidelines of the Animal Welfare and
Ethics Committee of the University of Cádiz for the protection of animals
used in scientific experiments, according to the principles published in
the European Animal Directive (2010/63/EU) and Spanish laws (Royal
Decree RD53/2013). In addition, the Ethical Committee from the

Autonomous Andalusian Government approved the experiments (Junta
de Andalucía reference number 23/10/2019/176).

2.3. Feeding protocol and sampling procedures

Fish with an initial mean body mass of 9.4 ± 0.1 for Trial I and 6.4 ±

0.1 g for Trial II were distributed in 9 tanks of 400 L capacity but using a
volume of ~200 L to maintain the initial stocking density near 1 kg/m3.
Experimental groups (CTRL, PP/PPe, and PP-LB/PP-LBe) were tested in
triplicate for 62 days (Trial I) and 69 days (Trial II) under the conditions
described above.

During the feeding trials, fish were kept in a flow-through circulatory
system as described above. Fish were then manually fed with experi-
mental diets five times per day (9.00 h, 10.30 h, 12.00 h, 13.30 h, and
18.00 h) until apparent satiety (ad libitum), ensuring that the amount
offered in each experimental unit was fully ingested. The feeding tests
were performed blindly, as the aquafeeds were labeled with different
colours without reference to their composition, eliminating any source
of subjectivity when feeding the animals. No mortality was detected in
any experimental group during the feeding trial.

Biometric samplings were carried out every three weeks using a
sedative dose (0.3 mL/L seawater) of 2-phenoxyethanol to assess growth
performance in both feeding trials, and feed intake was recorded weekly.
From this data, we calculated different zootechnical and biometric
indices (see Section 2.4). At the end of both feeding trials, 12 overnight
fasted fish from each experimental diet (4 fish per tank) were randomly
selected, deeply anesthetized with a lethal dose (1 mL/L seawater) of 2-
phenoxyethanol, and then individually weighed and measured. Blood
was drawn from the caudal vessels with heparinized syringes and
centrifuged at 3000 ×g for 20 min at 4 ◦C to obtain plasma. Fish were
then cervically sectioned and sampled to obtain biopsies of different
tissues. Liver and perivisceral fat were weighed from each individual.
The entire intestine was removed from the pyloric caeca down to the
rectum for length measurement. Plasma and liver samples were taken in
both experiments for the analysis of biochemical parameters, whereas
white skeletal muscle was obtained for proximal composition. Addi-
tionally, in Trial II, liver and muscle biopsies were sampled to assess
oxidative stress biomarkers and biochemical parameters, respectively.
Samples were snap-frozen in liquid nitrogen and stored at − 80 ◦C until
further analysis. Finally, the remaining fish of each experimental unit
were also weighted and measured to obtain the growth performance and
biometric parameters described below.

2.4. Growth performance and biometric parameters

The growth parameters evaluated were: i) Specific growth rate
(SGR) = (100 × (ln final body weight - ln initial body weight)/days; ii)
Weight gain (WG)= (100× (body weight increase)/initial body weight;
iii) Feed efficiency (FE) = weight gain/total feed intake; and iv) Con-
dition factor (K) = (100 × body weight)/fork length3.

Organosomatic indices were calculated as the ratio of tissue to body
weight or fork length for liver, perivisceral fat and intestine with the
following equations: i) Hepatosomatic index (HSI) = (100 × liver
weight)/fish weight; and ii) Intestine length index (ILI) = (100 × in-
testine length)/fork body length); and iii) Mesenteric index (MSI) =

(100 × perivisceral fat weight)/fish weight.

2.5. Biochemical and hormonal parameters of plasma

Metabolic parameters were spectrophotometrically analyzed using
commercial kits (SpinReact SA, St. Esteve d’ en Bas, Girona, Spain),
adapted to 96-well microplates. These parameters included glucose
(Ref. 131,001,200), lactate (Ref. 1,001,330), cholesterol (Ref. 41,021),
and triglycerides (Ref. 1,001,311). Plasma total protein concentration
was determined with the bicinchoninic acid method using the com-
mercial BCA kit (BCA™ Protein assay kit, Pierce, Rockford, USA).

Table 1
Ingredients and proximal composition (% dry matter) of the experimental diets
(Control, CTRL; Plant protein diet, PP; PP with 3 % of an algal-based additive,
PP-LB). Vegetable ingredients in diets PPe and PP-LBe were pre-treated by
enzymatic hydrolysis.

Ingredient composition CTRL PP/PPe PP-LB/PP-LBe

Fishmeal LT94 1 50.5 41.3 41.3
Squid meal 2 6.0
CPSP90 3 6.0 0.5 0.5
Krill meal 4 5.0 0.5 0.5
Shrimp meal 5 2.0 – –
Mussel meal 6 6.0 – –
Wheat gluten 7 5.0 13.0 12.4
Pea protein concentrate 8 1.8 14.9 14.5
Soybean protein concentrate 9 1.8 14.0 13.5
GreenBoost Plus 10 – – 3.0
Fish oil 11 6.7 9.4 9.1
Soybean lecithin 12 1.0 1.0 1.0
Wheat meal 13 4.2 1.4 0.2
Choline cloride 14 0.2 0.2 0.2
Betain 15 0.2 0.2 0.2
Vitamin and Mineral premix 16 1.5 1.5 1.5
Vitamin C 17 0.1 0.1 0.1
Guar gum 18 2.0 2.0 2.0
Crude protein 63.9 62.9 63.5
Crude lipid 18.7 18.4 18.2
Ash 12.9 10.8 11.0
Moisture 5.9 6.1 5.7

1 69.4 % crude protein, 12.3 % crude lipid (Norsildemel, Bergen, Norway). 2, 3, 4,
5, 6 purchased from Bacarel (UK). CPSP90 is enzymatically pre-digested fish-
meal. 7 78 % crude protein (Lorca Nutrición Animal SA, Murcia, Spain). 8 Pea
protein concentrate, 85 % crude protein, 1.5 % crude lipid (Emilio Peña SA,
Spain). 9 Soybean protein concentrate, 62 % crude protein, 2% crude lipid
(LorcaNutrition, Spain). 10 GreenBoost Plus additive composed by hydrolysed
yeasts (40 %), a blend of freshwater and marine microalgae (40 %) and Alaria
esculenta (20 %) enzymatically hydrolysed. 11 AF117DHA (Afamsa, Spain). 12

P700IP (Lecico, DE). 13 Local provider (Almería, Spain). 14, 15 Lorca Nutrición
Animal SA (Murcia, Spain). 16 Lifebioencapsulation SL (Almería, Spain). Vitamins
(mg kg− 1): vitamin A (retinyl acetate), 2000,000 UI; vitamin D3 (DL-cholecal-
ciferol), 200,000 UI; vitamin E (Lutavit E50), 10,000 mg; vitamin K3 (mena-
dione sodium bisulphite), 2500 mg; vitamin B1(thiamine hydrochloride), 3000
mg; vitamin B2 (riboflavin), 3000 mg; calcium pantothenate, 10,000 mg;
nicotinic acid, 20,000 mg; vitamin B6 (pyridoxine hydrochloride), 2000 mg;
vitamin B9 (folic acid), 1500 mg; vitamin B12 (cyanocobalamin), 10 mg vitamin
H (biotin), 300 mg; inositol, 50,000 mg; betaine (Betafin S1), 50,000 mg. Min-
erals (mg kg− 1): Co (cobalt carbonate), 65 mg; Cu (cupric sulphate), 900 mg; Fe
(iron sulphate), 600 mg; I (potassium iodide), 50 mg; Mn (manganese oxide),
960 mg; Se (sodium selenite), 1 mg; Zn (zinc sulphate) 750 mg; Ca (calcium
carbonate), 18.6 %; (186,000 mg); KCl, 2.41 %; (24,100 mg); NaCl, 4.0 %
(40,000 mg). 17 TECNOVIT, Spain. 18 EPSA, Spain.
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Plasma total bile acids were evaluated with the commercial TBA Kit
(SpinReact SA; Ref. 1,001,030) using a serum calibrator for total bile
acids assay (TBA CAL; Ref. 1,002,290) according to the manufacturer’s
indications. Plasma cortisol levels were assessed with the commercial
Cortisol Enzyme Immunoassay Kit (Arbor Assays, K003-H1W; Ann
Arbor, Michigan, USA), whereas plasma levels of Igf-i were measured
through competitive inhibition ELISA also using a commercial kit (CSB-
E12122Fh for IGF-I, CUSABIO), both according to the manufacturer’s
indications. All assays were performed with a PowerWave™ 340
microplate spectrophotometer (BioTek Instruments, Winooski, VT,
USA), controlled by KCjunior Software for Microsoft® Windows.

2.6. Biochemical parameters of liver and muscle

Frozen biopsies used for the assay of metabolites were mechanically
homogenized (blender) in 7.5 volumes ice-cold 0.6 N HClO4, neutralized
using 1 M KCO3, centrifuged (30 min, 3,220×g at 4 ◦C), and the isolated
supernatants were used to determine tissue metabolites. Triglycerides
(TAG) and lactate levels were determined spectrophotometrically with
commercial kits (SpinReact, see above). Glycogen concentration was
quantified using the method described by Keppler and Decker (1974),
where glucose obtained after glycogen breakdown with amyloglucosi-
dase (Sigma-Aldrich, Ref. A7420) was determined with the same glucose
commercial kit (SpinReact, see above).

2.7. Proximal composition

The proximal analysis of the different experimental diets, as well as
of the fish muscle was determined following the AOAC (2000) proced-
ures for dry matter and ash. Crude protein (N× 6.25) was determined by
elemental analysis (C: H: N) with a Fisons EA 1108 analyzer (Fisons
Instruments, USA). Values were expressed as percentage of dry matter
(% DM). The amount of total lipids was determined following the pro-
cedure described by Folch et al. (1957).

2.8. Oxidative stress biomarkers

Liver antioxidant status was assessed by measuring catalase activity
(CAT), total antioxidant capacity (TAC), protein carbonylation (PC),
lipid peroxidation (LPO), and mitochondrial reactive oxygen species
production (mtROS). Frozen samples were homogenized in 500 μL ultra-
pure water using an Ultra-Turrax® disperser (IKA®-Werke, Germany).
One aliquot containing 4 % butylated hydroxytoluene (BHT) in meth-
anol was used for the determination of LPO. The remaining homogenate
was diluted (1:1) in 0.2 M K-phosphate buffer, pH 7.4, and centrifuged
for 10 min at 10,000 ×g (4 ◦C). The post-mitochondrial supernatant
(PMS) was kept at − 80 ◦C for the analysis of catalase activity, total
antioxidant capacity, and protein carbonylation. CAT was determined
by measuring the decomposition of the substrate H2O2 at 240 nm
(Claiborne, 1985). TACwas assessed following the protocol described by
Erel (2004), using colored 2,2-azino-bis-(3-ethylbenzothiazoline-6-sul-
fonic acid) radical cation (ABTS+). PC was measured by the reaction
of 2,4-dinitrophenylhydrazine (DNPH) with carbonyl groups, according
to the DNPH alkaline method (Mesquita et al., 2014). Endogenous LPO
was determined by measuring thiobarbituric acid-reactive substances
(TBARS) (Bird and Draper, 1984).

For mtROS determination, samples were homogenized in 200 μL ice-
cold mitochondria isolation buffer (225 mMmannitol, 75 mM sucrose, 1
mM EGTA, and 4 mM HEPES, pH 7.2). Then, the homogenate was
centrifuged for 10 min at 600 ×g and 4 ◦C. The supernatant was picked
off and centrifuged again for 10 min, at 11,000 ×g and 4 ◦C. The pellet
was resuspended in a buffer containing 250 mM sucrose and 5 mM
HEPES (pH 7.2). mtROS production was assessed by the
dihydrodichloro-fluorescein diacetate method, H(2)DCF-DA (Van Der
Toorn et al., 2009).

The protein content of PMS (CAT, TAC, LPO, and PC determinations)

and mtROS samples was determined according to Bradford’s method
(Bradford, 1976) using bovine serum albumin as standard. All bio-
markers were determined in 96 well flat bottom microplates using a
temperature-controlled microplate reader (Synergy H1, BioTek Instru-
ment, Inc., USA).

2.9. Statistical analyses

Data on feed intake and growth indices are represented as the mean
± SEM (standard error of the mean) of triplicate tanks, data on somatic
indices are the mean ± SEM of 12 fish, and data on body mass are the
mean ± SEM of 60–75 fish per group. All data were checked for
normality and homogeneity of variance using Kolmogorov–Smirnov and
Levene’s tests, respectively, with p < 0.05. Differences among treat-
ments in all parameters were analyzed by one-way analysis of variance
(ANOVA, p < 0.05). Tukey’s test was applied to those parameters with
significant group differences (p < 0.05). The software package Graph-
Pad Prism 8.0 (GraphPad Software Inc., San Diego, CA, USA) was used
for all statistical analyses and figures.

3. Results

3.1. Growth performance and biometric parameters

Growth evolution (body mass, g) and weight gain (%) of the exper-
imental groups during both feeding trials are represented in Fig. 1 (A,
Trial I; B, Trial II). Growth performance and somatic indices from both
experiments are compared in Table 2. The initial body weight was the
same among experimental groups in the Trial I (~ 9 g) and the Trial II (~
6 g). In Trial I, individuals of the CTRL, PP, and PP-LB groups grew to a
final mean body weight of 61.5 g, 42.3 g, and 38.9 g, respectively, being
statistically lower (~31–36 %) in fish-fed both plant protein diets

Fig. 1. Evolution of growth and final weight gain (WG, %) of the three
experimental groups (CTRL, PP/PPe, and PP-LB/PP-LBe) from Trial I (A) and
Trial II (B) after the long-term feeding trials. CTRL control diet; PP/PPe: plant
protein diet; PP-LB/PP-LBe: PP/PPe diet with 3 % of an algae-based additive.
Data are the mean ± SEM of 36 fish/treatment. Different letters in each panel
mean statistical differences after one-way ANOVA and Tukey test (p < 0.05).
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compared to those fish-fed the CTRL diet. In contrast, in Trial II, fish-fed
plant-based diets (PPe and PP-LBe) grew faster than CTRL fish, with a
final body weight increase of ~121 % compared to the CTRL group. This
improvement was already observed in the PP-LBe group after the first
three weeks from the beginning of the feeding trial. A similar pattern
was observed in SGR and feed intake (FI), which were statistically lower
in fish-fed plant-based diets (PP and PP-LB) in Trial I, whereas in Trial II,
fish from the PPe and PP-LBe groups achieved significantly higher SGR
and FI compared to the CTRL group. In line with these results, in Trial I,
the plant protein diets (PP and PP-LB) produced a significantly lower FE
compared to the CTRL diet, whereas no differences in this parameter
were found among the experimental groups of Trial II. Regarding the
condition factor (K), no significant differences were observed among the
experimental groups in Trial I, although a significant increase was
detected in this parameter in fish-fed the PPe diet compared to the CTRL
group in Trial II. In terms of somatic indices, neither the HSI nor the ILI

showed differences among groups in Trial I. In contrast, in Trial II a
significantly higher ILI was observed in fish-fed plant protein diets (PPe
and PP-LBe) compared to the fish-fed CTRL diet.

3.2. Plasma, liver and muscle analyses

Results on plasma, liver, and muscle parameters are shown in
Table 3. Plasma glucose revealed no significant differences among
experimental groups in Trial I. However, a significant increase in this
metabolite was observed with the plant protein diets (PPe and PP-LBe)
in Trial II. Lactate levels decreased in the plasma of fish-fed PP diet
compared to the PP-LB and CTRL groups in Trial I, but in Trial II, no
differences were detected among groups for this metabolite. Similarly,
the PP diet caused a significant decrease in plasma TAG levels con-
cerning the other two groups in Trial I, while in Trial II, the levels were
significantly higher in both PPe and PP-LBe diets compared to the CTRL

Table 2
Growth performance and somatic indices of S. dumerili juveniles fed different experimental diets1. Data on feed intake and growth indices are the mean ± SEM of
triplicate tanks. Data on somatic indices are the mean± SEM of 12 fish, whereas data on initial and final body mass are the mean± SEM of 36 fish. Different superscript
letters in each row indicate significant differences among dietary treatments based on one-way ANOVA and Tukey’s test (p < 0.05).

Trial I Trial II

CTRL PP PP-LB p2 CTRL PPe PP-LBe p2

Initial body mass (g) 9.41 ± 0.01 9.42 ± 0.01 9.46 ± 0.01 0.4464 6.37 ± 0.01 6.35 ± 0.01 6.34 ± 0.01 0.1715
Final body mass (g) 61.5 ± 4.2a 42.3 ± 4.2b 38.9 ± 4.2b 0.0040 57.3 ± 2.1b 67.7 ± 2.1a 70.8 ± 2.1a 0.0004
SGR (%)3 3.03 ± 0.06a 2.42 ± 0.05b 2.28 ± 0.03b 0.0001 3.18 ± 0.01b 3.44 ± 0.02a 3.49 ± 0.03a 0.0001
FI4 47.7 ± 0.7a 39.3 ± 0.3b 38.3 ± 0.7b 0.0001 44.7 ± 2.8b 59.1 ± 0.7a 63.1 ± 0.7a 0.0007
FE5 1.19 ± 0.04a 0.86 ± 0.08b 0.82 ± 0.03b 0.0058 1.14 ± 0.07 1.04 ± 0.03 1.02 ± 0.03 0.2056
K6 1.66 ± 0.02 1.65 ± 0.02 1.67 ± 0.04 0.8959 1.63 ± 0.02b 1.70 ± 0.01a 1.67 ± 0.01ab 0.0108
HSI (%)7 1.06 ± 0.11 1.35 ± 0.14 1.33 ± 0.18 0.2040 1.33 ± 0.08 1.34 ± 0.07 1.27 ± 0.11 0.8300
ILI (%)8 78.2 ± 2.7 75.9 ± 3.9 75.0 ± 2.3 0.8020 63.5 ± 2.1b 75.0 ± 1.5a 70.8 ± 1.6a 0.0002

1 Control, CTRL; Plant protein diet, PP/PPe; PP/PPe with 3 % of an algal-based additive, PP-LBe.
2 Values resulting from one-way analysis of variance (ANOVA).
3 Specific growth rate = 100 × (ln final body weight − ln initial body weight)/days.
4 Feed Intake = (grams of aquafeed consumed/tank)/week.
5 Feed Efficiency = weight gain/total feed intake.
6 Condition factor = (100 × body weight)/fork length3.
7 Hepatosomatic index = (100 × liver weight)/fish weight.
8 Intestine length index = (100 × intestine length)/fork length.

Table 3
Plasma, liver, and muscle biochemistry of S. dumerili juveniles fed different experimental diets1. Data are the mean ± SEM of 12 fish. Different superscript letters in
each row indicate significant differences among dietary treatments based on one-way ANOVA and Tukey’s test (p < 0.05).

Trial I Trial II

CTRL PP PP-LB p2 CTRL PPe PP-LBe p2

Plasma
Glucose (mM) 6.12 ± 0.17 6.43 ± 0.35 6.89 ± 0.29 0.2001 4.87 ± 0.15b 5.62 ± 0.24a 5.54 ± 0.16a 0.0113
Lactate (mM) 2.02 ± 0.08a 1.58 ± 0.10b 2.17 ± 0.21a 0.0055 2.25 ± 0.16 2.43 ± 0.10 2.38 ± 0.13 0.4712
Triglycerides (mM) 0.49 ± 0.04a 0.34 ± 0.04b 0.51 ± 0.04a 0.0152 1.18 ± 0.04b 1.51 ± 0.07a 1.51 ± 0.08a 0.0011
Cholesterol (mM) 8.05 ± 0.39a 7.18 ± 0.23ab 6.78 ± 0.19b 0.0231 5.15 ± 0.22 5.11 ± 0.14 5.21 ± 0.14 0.0997
Total bile acids (μM) 28.1 ± 3.2 23.8 ± 2.4 30.3 ± 4.9 0.4039 15.7 ± 2.4 17.9 ± 2.5 16.1 ± 1.9 0.2761
Proteins (mg/mL) 29.5 ± 0.9a 15.4 ± 0.8b 14.7 ± 0.4b 0.0001 32.8 ± 1.4b 37.8 ± 1.2a 39.4 ± 1.2a 0.0027
Cortisol (ng/mL) 7.02 ± 0.86b 9.66 ± 1.08ab 11.8 ± 1.50a 0.0027 8.08 ± 1.12 13.9 ± 3.10 10.8 ± 2.80 0.2676
Igf-i (ng/mL) 4.16 ± 0.04b 5.34 ± 0.11a 5.37 ± 0.19a <0.0001

Liver
Triglycerides (mg/g tissue) 38.2 ± 1.3 44.1 ± 2.8 44.9 ± 2.9 0.1004 28.7 ± 3.3b 61.7 ± 4.4a 59.8 ± 3.3a 0.0001
Glucose (mg/g tissue) 1.39 ± 0.17 1.14 ± 0.13 1.41 ± 0.26 0.2574 2.80 ± 0.32 3.35 ± 0.14 3.02 ± 0.17 0.2181
Glycogen (mg/g tissue) 6.17 ± 0.49a 4.13 ± 0.27b 3.85 ± 0.25b 0.0003 8.22 ± 1.03 6.99 ± 0.63 8.43 ± 0.44 0.3517
Lactate (mg/g tissue) 0.08 ± 0.01ab 0.07 ± 0.01b 0.13 ± 0.03a 0.0362 0.07 ± 0.02b 0.16 ± 0.03a 0.11 ± 0.02ab 0.0236

Muscle
Triglycerides (mg/g tissue) – – – – 5.59 ± 0.36 6.13 ± 0.38 6.48 ± 0.68 0.4509
Glucose (mg/g tissue) – – – – 0.94 ± 0.25 1.56 ± 0.43 1.07 ± 0.40 0.4875
Glycogen (mg/g tissue) – – – – 4.47 ± 0.68 5.40 ± 1.07 6.08 ± 0.88 0.4466
Lactate (mg/g tissue) – – – – 2.89 ± 0.19 3.04 ± 0.24 3.03 ± 0.22 0.8690

1 Control, CTRL; Plant protein diet, PP/PPe; PP/PPe with 3 % of an algal-based additive, PP-LBe.
2 Values resulting from one-way analysis of variance (ANOVA).
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group. Cholesterol levels only changed in fish fed on diets without
enzymatic pre-treatment. Specifically, PP-LB diet evoked a significant
reduction in cholesterol levels compared to the CTRL diet. No differ-
ences were found in plasma total bile acids among groups in neither
experiment. Comparing both experiments, protein plasma levels showed
opposite patterns, being reduced in fish-fed plant protein diets (PP and
PP-LB, Trial I) and increased in fish fed with enzymatically pre-treated
plant-based diets (PPe and PP-LBe, Trial II) compared to their respec-
tive CTRL groups. Besides, changes in cortisol levels were only observed
in Trial I, increasing in fish fed the PP-LB diet compared to the other two
experimental groups. Finally, in Trial II, Igf-i levels were raised in fish-
fed pretreated vegetable diets compared to the CTRL fish.

In the liver, no differences in free glucose levels were observed
among groups in any feeding trials performed. However, in Trial I (but
not in Trial II), both plant protein diets (PP and PP-LB) produced a
decrease in glycogen levels compared to the CTRL group. Hepatic TAG
levels did not differ among groups in Trial I whereas the plant protein
diets in Trial II (PPe and PP-LBe) increased TAG deposited in the liver
compared to the CTRL group. Lastly, in Trial I, an increase in lactate
levels was observed in the liver of the fish-fed PP-LB diet compared to
the other two groups, while the pre-treatment of vegetable ingredients
(Trial II) produced a significant increase of lactate in fish-fed PPe
compared to the CTRL group. Note that muscle analyses were only
assessed for Trial II, in which no significant differences were found in
any of the parameters analyzed.

3.3. Proximal composition of muscle

Proximal composition of greater amberjack muscle fed with the
different experimental diets in both Trial I and II is detailed in Table 4. In
Trial I, protein content in fish fed with PP and PP-LB diets was similar to
the CTRL group, but the lipid content was lower in those fish fed with
diets enriched in plant protein (PP and PP-LB). Muscle protein content
did not differ among dietary treatments in Trial II but the lipid content
tended to increase slightly in the groups fed the diets elaborated with a

high content of the enzymatically hydrolysed vegetable ingredients (PPe
and PP-LBe groups). Ash content in CTRL group was higher compared
fish fed on PP and PP-LB in Trial I, but lower in CTRL compared to PPe in
Trial II. Concerning moisture, fish fed CTRL showed lower values only in
Trial I.

3.4. Oxidative stress

Results of liver antioxidant status assessed for Trial II are shown in
Table 5. CAT showed a significant decrease in fish fed the PPe diet
compared to the CTRL group, while the PP-LBe group had intermediate
values. The opposite trend is observed in mtROS. However, in parame-
ters such as TAC, protein carbonylation, and LPO no differences were
found among the CTRL diet and the other two diets with a high content
of vegetable protein sources.

4. Discussion

Several studies have demonstrated that pre-treatments by enzymatic
hydrolysis of vegetable sources, including algae, can improve di-
gestibility and growth performance in different fish species (Ai et al.,
2007; Cao et al., 2007; Kalhoro et al., 2018; Maas et al., 2018, 2019,
2020; Martínez et al., 2019; Martínez-Antequera et al., 2021; Molina-
Roque et al., 2022) but this issue has never been examined before in the
greater amberjack. Likewise, results obtained revealed that the enzy-
matic treatment of plant proteins allows the inclusion of at least 44.5 %
plant proteins substituting animal marine protein, resulting in ~50 % of
total protein included in aquafeeds, without affecting, or even
improving, the growth performance of a carnivorous fish species of high
commercial interest such as the greater amberjack (S. dumerili). More-
over, the effects of exogenous enzymes are not only beneficial when
feeding carnivorous species with vegetable feedstuffs but also produce
the same improvements in herbivorous species, as it has also been
confirmed in Nile tilapia (Oreochromis niloticus) (Lin et al., 2007; Goda
et al., 2012) or in grass carp (Ctenopharyngodon idella) (Zhou et al.,

Table 4
Proximate composition (g 100 g− 1 wet weight) in the muscle of S. dumerili juveniles fed different experimental diets1. Data are the mean ± SEM of 12 fish. Different
superscript letters in each row indicate significant differences among dietary treatments based on one-way ANOVA and Tukey’s test (p < 0.05).

Trial I Trial II

CTRL PP PP-LB p22 CTRL PPe PP-LBe p2

Total protein 18.43 ± 0.05 18.31 ± 0.08 18.28 ± 0.02 0.1570 21.10 ± 0.08 21.02 ± 0.07 20.86 ± 0.04 0.2350
Total lipid 1.16 ± 0.02a 0.95 ± 0.02b 0.96 ± 0.02b 0.0002 1.08 ± 0.02b 1.13 ± 0.01b 1.19 ± 0.01a 0.0023
Ash 1.66 ± 0.01a 1.54 ± 0.02b 1.54 ± 0.02b 0.0116 1.56 ± 0.01b 1.63 ± 0.01a 1.61 ± 0.02ab 0.0153
Moisture 77.03 ± 0.018b 78.54 ± 0.14a 78.06 ± 0.20a 0.0025 75.38 ± 0.67 75.05 ± 0.04 75.28 ± 0.15 0.8854

1 Control, CTRL; Plant protein diet, PP/PPe; PP/PPe with 3 % of an algal-based additive, PP-LBe.
2 Values resulting from one-way analysis of variance (ANOVA).

Table 5
Liver oxidative status in S. dumerili juveniles fed different experimental diets1. Data are the mean ± SEM of 12 fish. Different superscript letters in each row indicate
significant differences among dietary treatments based on one-way ANOVA and Tukey’s test (p < 0.05). Prot: protein.

Trial II

CTRL PPe PP-LBe p2

CAT (Act/μg prot)3 8.37 ± 0.58a 6.68 ± 0.45b 7.05 ± 0.36ab 0.0436
TAC (μmol trolox/mg prot)4 0.31 ± 0.08 0.31 ± 0.07 0.19 ± 0.05 0.3742
PC (μmol carbonyl/μg prot)5 3.56 ± 0.75 7.53 ± 1.45 7.12 ± 1.59 0.0684
LPO (nmol TBARS/μg prot)6 0.12 ± 0.02 0.21 ± 0.04 0.19 ± 0.02 0.1193
mtROS (Act/μg prot)7 17.5 ± 3.9b 50.3 ± 8.3a 37.2 ± 7.5ab 0.0059

1 Control, CTRL; Plant protein diet, PP/PPe; PP/PPe with 3 % of an algal-based additive, PP-LBe.
2 Values resulting from one-way analysis of variance (ANOVA).
3 Catalase activity.
4 Total antioxidant capacity.
5 Protein carbonylation.
6 Lipid peroxidation.
7 Mitochondrial reactive oxygen species production.
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2013). Although previous studies, such as those performed by Jover
et al. (1999) with Seriola dumerili or by Watanabe et al. (1995) with
Seriola quinqueradiata, showed positive growth results with 20 % soy-
bean meal inclusion, Tomás et al. (2005) and Dawood et al. (2015) set
this limit at 30 % without affecting the productive performance of
S. dumerili. Even so, recent studies seem to be promising in terms of
growth performance by a 100 % replacement of FM and fish oil in this
species by other vegetable and animal meals, although a clear reduction
in survival rates was obtained in the most extreme diet (Milián-Sorribes
et al., 2024). In the present study, the aquafeeds used in both trials
contained no more than 15 % soybean protein concentrate. This mod-
erate inclusion might explain the promising results in feed efficiency,
which was better in Trial II after submitting the plant ingredients to an
enzymatic pre-treatment before aquafeed elaboration. However, other
factors such as legume varieties, protein extraction methods (Decroos
et al., 2007), or the presence and interaction among different ANFs
cannot be discarded. Although the accurate reason for the adverse ef-
fects of soybean derivatives is not fully established, some research points
out that the interaction among ANFs, antigens, and intestinal microbiota
could be the cause of impaired nutrient digestibility and absorption,
leading to intestinal inflammation (Hu et al., 2021; Zhang et al., 2021),
and protein and lipid metabolism affection (Lazzarotto et al., 2018).

Fish-fed diets with vegetable ingredients pre-treated enzymatically
(PPe) reached an SGR of 3.5 % compared to fish-fed diets with untreated
ingredients (SGR = 2.5 %). This indicates an improved growth during
the experimental period, which is confirmed by the increase of plasma
insulin-like growth factor I (Igf–i) in fish fed pre-treated diets since this
hormone, together with growth hormone (Gh), participates in growth
regulation and they are the main muscle-accretion regulatory factors
(Vélez et al., 2016; Perelló-Amorós et al., 2021). Also, fish-fed with the
PPe diet showed the highest condition factor, reaching values of 1.70 ±

0.01, similar to other studies in wild and cultured specimens of
S. dumerili (Fernández-Montero et al., 2018) which may indicate a good
health status. Contrary to what occurred with untreated vegetable diets
with or without the algae-based nutraceutical, inducing a lower feed
intake and feed efficiency when compared to the CTRL diet, the appli-
cation of enzymatic hydrolysis on vegetable ingredients increased feed
intake without changes in feed efficiency. Thus, it could be suggested
that the enhanced growth of fish-fed these diets was not only due to
better bioavailability, assimilation, and utilization of the nutrients but
also to better palatability that allowed the high feeding rates observed.
Even more importantly, this observation also suggests that nutritional
intervention does not produce any detrimental effects on feed accept-
ability since voluntary feeding cessation is one of the first problems
observed when a nutritional imbalance is denoted (Bendiksen et al.,
2011; Sun et al., 2016). Indeed, fish with carnivorous habits, such as
S. dumerili, are not able to digest and use optimally the carbohydrates
present in vegetables due to low activities of enzymes such as amylase
(Hidalgo et al., 1999). In some cases, these compounds can be consid-
ered as ANFs and cannot be used for producing energy, relying on fats
and proteins as energy sources, or even behaving as undigested and
excreted molecules. This is why the application of enzymes benefits the
use of these alternative ingredients to improve growth performance
without affecting their gut microbial diversity, as has been recently
described by Flores-Moreno et al. (2024) and Peralta-Sánchez et al.
(2024) in European seabass (Dicentrarchus labrax), as it enhances the
bioavailability of these compounds improving absorption in the prox-
imal intestine (Kamalam et al., 2017), and allowing an optimal and
faster growth without affecting animal health. In addition to that,
another interesting finding is related to the LB nutraceutical which did
not have any effect in Trial I and does not seem to be too relevant in a
long-term feeding period since this supplemented diet produces almost
the same growth performance as PPe at the end of the Trial II. Even so,
during the first weeks of the feeding trial, the algae-based additive
seemed to stimulate growth faster, as shown in the evolution of biomass
along the feeding trial (Fig. 1B), which could be used as a preventive

treatment for putative nutritional impacts due to changes in aquafeed
formulation, especially in the first contact (short periods) to new feeds.
Then to fully understand the underlying cause or consequence of these
observations, further studies will be conducted at the intestinal level, in
terms of intestinal functionality, microbiota, or molecular and endoge-
nous intestinal mechanisms.

Regarding organosomatic indices, HSI values in Trial I and II (above
1 %) are in line with those shown in previous nutritional studies with
this species when animal marine protein is replaced by vegetable protein
(Dawood et al., 2015; Hossain et al., 2018; Monge-Ortiz et al., 2018;
Takakuwa et al., 2020). Similar HSI have also been reported for greater
amberjack fed with a commercial diet at the same culture temperature
(Fernández-Montero et al., 2018). All these indicate that using vegetable
ingredients per se would not affect the energy status of the liver or fish
health, regardless of whether they are pre-treated. It is mainly related to
the fine formulation covering nutritional species-specific traits. On the
other hand, the diets used in the present study provoke an increment of
fat accumulation (TAG) in the liver, especially in Trial II, which is a
typical consequence of aquafeeds formulated with a high content of
vegetable ingredients (Gu et al., 2014; Zhang et al., 2019; Yao et al.,
2024). Likewise, the slight TAG increase (non-significant) in fish-fed
diets with untreated plant ingredients could be the result of the
reduced feed intake, in which the energy ingested was used for basal
metabolism avoiding an excess accumulation in the liver. On the other
hand, it is well-known that fish gut length strongly depends on feeding
habits, with carnivorous species having shorter guts. However, omniv-
orous species such as gilthead seabream (Sparus aurata) can elongate
their intestine to increase the absorption surface when the diet contains
more vegetable feedstuffs (Santigosa et al., 2008; Perera et al., 2020;
Molina-Roque et al., 2022). Contrary to that observed in other studies
regarding the lack of an intestinal adaptation in S. dumerili (Takakuwa
et al., 2020), the results of the present work demonstrated the intestinal
adaptability in this species when ingesting aquafeeds with a high pro-
portion of vegetable sources, as evidenced the increase of intestine
length (ILI) in fish-fed with pre-treated vegetable ingredients compared
to the CTRL group. However, this plasticity is only evidenced in fish fed
diets with the enzymatic treatment which probably caused an increase
in nutrient bioavailability, though more analyses are needed to fully
understand the intestinal plasticity and functionality of the greater
amberjack. The results obtained strongly suggest that this species can
only benefit from nutrients easily digestible by their natural enzymatic
capacity. In fact, low carbohydrase activity is still expected in fish spe-
cies with carnivorous preferences, as previously described in S. dumerili
where authors did not detect amylase activity in juveniles in previous
studies (Navarro-Guillen et al., 2022), being only detected in first-
feeding larvae using fluorescence techniques (Gamberoni et al., 2021).
This may be the cause or the consequence of why this capacity remained
hidden in previous studies in this species and the lack of changes in the
intestinal length of fish-fed diets without a pre-treatment (Trial I). This
agreed with previous studies in other species, such as rainbow trout
(Oncorhynchus mykiss), when comparing a commercial diet with a
vegetable-based diet (Gatesoupe et al., 2018), in striped catfish with
different percentages of FM replacement with grains (Allam et al., 2020)
or gilthead seabreamwhen varying levels of substitution using vegetable
protein sources (Sitjà-Bobadilla et al., 2005).

As stated before, natural feeding habits affect the ability to use
digestible carbohydrates in farmed fish. Herbivorous and omnivorous
species tend to have a more efficient carbohydrate metabolism due to
greater amylase activity, intestinal glucose uptake capacity, and control
of glycemia compared to carnivorous fish (Kamalam et al., 2017). In
addition, glycemia in fish is known to be highly dependent on the rate of
feed intake (Polakof et al., 2012) which is in line with fish fed diets with
untreated (reduced FI) and pre-treated (increased FI) vegetable in-
gredients. In fact, the glucose increase in fish-fed pre-treated diets has
also been described when replacing FM with fermented soybean pulp in
African catfish (Clarias gariepinus) (Kari et al., 2021). This may be a
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consequence of the treatment of plant proteins which produces a higher
bioavailability of carbohydrates together with an increased feed intake.
This could be explained by a relative increase not only in carbohydrates
but also in their bioavailability since, as mentioned in Basto-Silva et al.
(2021), an increase in carbohydrate content in diets can lead to less
satiety sensation due to an increase in leptin receptor (lepr) and a
decrease of cholecystokinin (cck) intestinal expression (orexigenic and
anorexigenic hormones, respectively). Those results were obtained at 5
h after feeding, so, considering that we fed fish every 1.50 h, the increase
in feed intake in the groups with plant proteins could be explained by a
lower satiety sensation. Moreover, recent studies in the yellowtail
kingfish (Seriola lalandi) conclude that starch is poorly digested by
yellowtail kingfish probably due to low amylase activity, secretion, and
biosynthesis or the relatively short gut length of yellowtail kingfish
(Horstmann et al., 2023; Zuther et al., 2024). In addition, RNA-Seq
studies in larvae of Seriola quinqueradiata despite revealing the exis-
tence of two α-amylase genes, exhibited low or undetected expression
levels along the gastrointestinal tract (stomach, intestine, and rectum
tissues), while showing higher proteolytic enzyme activities according
to the transcriptional signatures exhibited by carnivorous fish (Yasuike
et al., 2018). Considering all described above, plasma lactate levels were
not affected in fish fed with pre-treated plant-based diets (Trial II),
whereas a decrease in lactate occurred in fish fed the untreated plant
protein diet (PP, Trial I), as described in previous studies (Resende et al.,
2023). Higher lactate levels can also result from carbohydrate-enriched
diets that contribute to increased glycogen stores and preferential
glycogen degradation for energy requirements (Maruhenda Egea et al.,
2015). In the present study, the algae-based nutraceutical seems to have
a positive effect in re-establishing the values, similar to the rest of the
groups in Trial I.

Parallelly, the increase in TAG plasma levels in fish-fed pre-treated
vegetable diets compared to the CTRL diet mainly reflected the
increased feed intake observed (Table 2). However, the levels of this
metabolite also depend on other parameters, such as the species tested,
diet composition, stage of development, and the type of dietary plant
ingredients used (Ye et al., 2019). Accordingly, some studies reported an
increase in plasma TAG in fish fed with plant-based aquafeeds (Slawski
et al., 2011; Takakuwa et al., 2020; Shen et al., 2020), whereas others
showed a decrease in this metabolite (Regost et al., 1999; Moradi et al.,
2013; Slawski et al., 2012; Rahmdel et al., 2018). In the present study,
and considering the results obtained in terms of growth performance, it
seems that the pre-treatment of vegetable ingredients also induced a
better use of the energy supplied by dietary lipids. In general, the pre-
treatment of ingredients performed in this study seems to allow a bet-
ter availability of both glucose and TAG metabolites which fish might
use as fuel for growth. Another widely described consequence of the use
of plant proteins is the reduction of cholesterol levels regardless of the
species (Regost et al., 1999; Kaushik et al., 2004; Moradi et al., 2013;
Gatesoupe et al., 2018; Ye et al., 2019) or developmental stage (Rahmdel
et al., 2018), as it was observed in fish-fed untreated plant-based diets.
However, pre-treated vegetable-based diets can maintain stable
cholesterol levels in plasma. According to Sitjà-Bobadilla et al. (2005),
hypocholesterolaemia in fish when feeding plant proteins may be due to
increased bile salt excretion, or the inhibition of cholesterol absorption
in the intestine. Moreover, it is expected that lower dietary cholesterol
level in diets formulated with a high content of plant protein ingredients
for replacing FM can contribute to lowering the concentration of this
metabolite in plasma. Considering that experimental diets tested in both
feeding trials had the same amount of FM and that the plasma total bile
acids levels did not vary among groups in either trial, the results may
indicate an improved bioavailability and absorption of dietary choles-
terol when the vegetable ingredients are enzymatically hydrolysed
before inclusion in aquafeeds. Remarkably, and similar to previous
studies (Sitjà-Bobadilla et al., 2005; Moradi et al., 2013; Allam et al.,
2020), plasma protein levels were reduced in fish-fed untreated plant-
based diets, probably due to the lower digestibility capacity of plant

proteins (Regost et al., 1999). However, when vegetable ingredients
were pre-treated enzymatically in our study, a higher mobilization of
plasma proteins was observed, which may suggest higher bioavailability
and bioaccessibility of dietary proteins, as has been shown with the
fermentation of soybean pulp (Kari et al., 2021) or rapeseed meal
(Dossou et al., 2018) before their inclusion in the feed. Since proteins are
related to structural components for tissue development and growth in
addition to energy sources (García-Márquez et al., 2023, and references
herein), the higher plasma proteins could also be correlated with growth
performance (i.e. the highest levels of plasma proteins were found in
fast-growing groups, and vice versa).

Stress is one of the factors to consider in aquaculture production, as it
can affect hormone secretion rates, intermediarymetabolism, immunity,
and nutrient utilization (Hossain et al., 2017). The use of vegetable in-
gredients in fish diets affects cortisol release, likely due to the different
PUFA contents (Montero et al., 2003; Montero and Izquierdo, 2010;
Ganga et al., 2011; Montero et al., 2015). In carnivorous species, these
ingredients can cause enteritis (Jutfelt, 2011; Stone et al., 2018; Liu
et al., 2020; Seibel et al., 2022), leading to cortisol release into the
bloodstream (Carabotti et al., 2015). However, only fish-fed diets
without pre-treatment showed increased cortisol levels with respect to
fish fed CTRL diet, indicating a clear positive effect of enzymatic treat-
ment of vegetable proteins on overall metabolism and well-being in this
fish species. Cortisol is not only a biomarker of stress but also a master
regulator of metabolism playing an important role in growth, osmo-
regulation, and reproduction (Mommsen et al., 1999) and even more at
the physiological levels detected in our experimental approach. This
underscores the importance of hydrolysing vegetable ingredients to
enhance the digestion and absorption of lipid content.

Accordingly, the liver is probably the most critical organ for evalu-
ating the metabolic effects of the diet, primarily related to lipid meta-
bolism (Ye et al., 2019), since it is one of the main energy reservoirs and
the target tissue for metabolic hormonal control (e.g. cortisol). In this
regard, an increase in TAG deposition in the liver of fish-fed pre-treated
vegetable ingredients diets is in line with previous studies in other fish
species (Sitjà-Bobadilla et al., 2005; Zhou et al., 2005; Rahmdel et al.,
2018). Replacement of animal marine ingredients with plant proteins
can cause liver damage (Takakuwa et al., 2020) and, among other ef-
fects, can lead to steatosis (Siddik et al., 2021) or affect the immune
response by decreasing complement proteins production (Sitjà-Boba-
dilla et al., 2005). On the other hand, carbohydrate metabolism was
little affected by rich-plant protein diets except for the lower glycogen
content in the liver of fish-fed untreated vegetable diets (Trial I). This
could be due to different factors, as i) the lower feed intake observed in
these two experimental groups; ii) a lower bioavailability of carbohy-
drates from the diet, and/or iii) the potential stimulation of glycolytic
pathways by cortisol action (Mommsen et al., 1999). Therefore,
applying exogenous enzymes as carbohydrases may avoid the reduction
of hepatic glycogen storage (Castillo and Gatlin III, 2015), which is an
important energy source and essential for physiological processes.
Lastly, the production of reactive oxygen species (ROS) is a natural
process caused by the cellular metabolism itself but can be modulated by
its interaction with the environment, such as dietary changes. An in-
crease in ROS leads to oxidative damage, which triggers enzyme inac-
tivation, protein carbonylation, and lipid peroxidation, among others.
Balanced concentrations of anti- and pro-oxidant factors are continu-
ously generated during regular cellular metabolism to avoid this situa-
tion (Lushchak, 2016). Among these antioxidant factors, catalases
reduce H2O2 to H2O in the peroxisomes (Betancor et al., 2012). Dietary
changes can cause an imbalance in ROS production and removal, which
may lead to a reduction in fish growth performance (Betancor et al.,
2012; Roo et al., 2019). In gilthead seabream, dietary vegetable oil
mixtures differentially modified the intestinal oxidative status (García-
Meilán et al., 2023) although this has not been observed in the greater
amberjack (Milián-Sorribes et al., 2023). Thus, these results suggest that
dietary fatty acid composition effects on oxidative metabolism are
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species-specific. In Atlantic salmon (Salmo salar), a change from a
marine-based to a plant-based diet affected the antioxidant defense,
with lower catalase activity in fish transferred to a plant-based diet
(Olsvik et al., 2011). These findings align with those of the present
study, where the dietary inclusion of pre-treated vegetable ingredients
significantly increased mtROS production in liver. However, in our
study, this outcome may be related to a higher metabolic activity
associated with faster growth which does not necessarily involve an
imbalance in oxidative status in the liver, judging by the absence of
relevant changes in lipid peroxidation and other indicators of oxidative
stress. Moreover, even in this scenario, it is interesting to note that the
addition of the nutraceutical to the plant-based diet provided additional
protection against oxidative stress, with a tendency to decrease ROS
production and increase catalase activity in the PP-LBe group. Thus, it is
still worth studying if the use of this nutraceutical in aquafeeds with a
high nutritional value, as those tested in Trial II of the present study, can
provide some advantages when this fish species is fed with plant protein
diets concurrently with other stressors known to boost oxidative stress
under farming conditions. In addition, our results pointed out that the
use of the nutraceutical should be further evaluated in feeds with fish oil
replacement by vegetable oils.

Finally, in Trial II, vegetable protein inclusion did not significantly
affect muscle metabolism. In a previous study in Senegalese sole (Solea
senegalensis), Rodiles et al. (2015) did not observe any changes in the
proximate composition of muscle, fatty acid profile, or muscular me-
tabolites with a 30 % FM replacement using plant protein sources.
Additionally, no adverse effects were observed on the whole body and
muscle proximate composition in Atlantic cod (Gadus morhua) when fed
diets rich in plant proteins (Hansen et al., 2007). This suggests that the
use of plant protein sources, at least enzymatically pre-treated, does not
affect muscle metabolism and function, regardless of species and feeding
habits. Besides, the chemical composition of fish muscle constitutes a
valuable indicator of its quality and nutritional values (Lanza et al.,
2001; Ahmed et al., 2022). In this context, results obtained in Trial I did
not show a significant increase in muscle protein content in fish-fed PP
diet despite the fact the increased body moisture level which might be
associated to nutritionally unbalanced diet and the observed suboptimal
growth. These findings were consistent with other studies where has
been demonstrated that replacing FM protein with soybean meal in diets
did not affect the proximate composition in rainbow trout (Yang et al.,
2010) or European seabass (Tibaldi et al., 2006). However, the results
obtained disagree with those reported in Bastard halibut (Paralichthys
olivaceus; Shen et al., 2024), catfish (Pseudobagrus ussuriensis; Wang
et al., 2015), Nile tilapia (Ajani, 2016), and European seabass (Kaushik
et al., 2004). Fish fed the PP/PPe and PP-LB/PP-LBe diet showed a
protein content similar to that observed in the CTRL groups, which
might suggest that the dietary inclusion of the algae-based functional
additive did not affect protein accretion when feeding fish on diets with
a high content of plant ingredients. However, several studies have
documented an increase in muscle protein in other cultured fish species,
attributing this phenomenon to the dietary inclusion of algae (Abdel-
Warith et al., 2016; Roohani et al., 2019; Galafat et al., 2020). Regarding
muscle lipid content, our results showed a significant decrease in fish-
fed PP and PP-LB diets, which is reversed in fish-fed diets including
the vegetable ingredients enzymatically treated (PPe and PP-LBe). This
fact could be related to the lower availability of nutrients in plant
sources, which could increase the use of lipids as an energy source.
Similar results have been described for different aquaculture fish species
when replacing FM with vegetable meals (Gaber, 2006; Wang et al.,
2015; Song et al., 2020; Peng et al., 2022). In this sense, previous works
reported that the use of algae in aquafeeds could also cause an impact on
lipid turnover, which could lead to a reduction in lipid storage in fish
muscle (Vizcaíno et al., 2016).

5. Conclusions

The results obtained in the present study demonstrate that the in-
clusion of a high % of plant protein in the diet (44.5 %) partially
replacing marine animal protein can affect the growth performance in
S. dumerili juveniles. However, the enzymatic treatment of the plant
protein sources provides a potential tool for improving nutritional bio-
accessibility and value. Moreover, the supplementation of the plant-
based diet with the algae-based additive in Trial II allowed a faster
adaptation of fish to vegetable diets compared to those fish-fed on diets
that were devoid of it. Although supplementation with this additive does
not seem to provide significant benefits to the culture of S. dumerili in a
short- term (62 and 69 days), it may help to attenuate the negative ef-
fects of using high levels of plant proteins on other aspects, such as
orchestrate the physiological and metabolic responses or ameliorate the
hepatic oxidative stress. It would be interesting to conduct further
studies to evaluate the impact of this and other nutraceutical compounds
in a longer-term feeding trial in this fast-growing species, and also to
assess its value for intestinal plasticity and adaptation to the nutritional
impacts caused by these newer aquafeed formulations.
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Monge-Ortiz, R., Tomás-Vidal, A., Gallardo-Álvarez, F.J., Estruch, G., Godoy-Olmos, S.,
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